
Comparing

Version

Numbers

PyCon CZ 2023



PyCon CZ 2023



PyCon CZ 2023



How would 
you compare 
them then?
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Semantic

Versioning
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1.5.2
MAJOR

MINOR

PATCH
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def compare_versions(v1, v2):

    """Compare two version strings (in format x.y.z)."""

    

    if v1 == v2:

        return RESULT.EQUAL


    v1t = [int(num) for num in v1.split('.')]

    v2t = [int(num) for num in v2.split('.')]


    for v1v, v2v in zip(v1t, v2t):

        if v1v > v2v:

            return v1

        elif v2v > v1v:

            return v2
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Well...
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1.5.2-rc.1

A pre-release version MAY be 
denoted by appending a 
hyphen and a series of dot 
separated identifiers 
immediately following the patch 
version.

When major, minor, and patch 
are equal, a pre-release version 
has lower precedence than a 
normal version:


Example: 1.0.0-alpha < 1.0.0.
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...and
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Precedence for two pre-release versions 
with the same major, minor, and patch 
version MUST be determined by comparing 
each dot separated identifier from left to 
right until a difference is found as follows:


1. Identifiers consisting of only digits are 
compared numerically.


2. Identifiers with letters or hyphens are 
compared lexically in ASCII sort order.


3. Numeric identifiers always have lower 
precedence than non-numeric identifiers.


4. A larger set of pre-release fields has a 
higher precedence than a smaller set, if all 
of the preceding identifiers are equal.


Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-
alpha.beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-
beta.11 < 1.0.0-rc.1 < 1.0.0.
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there 

could


be

build


metadata
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Build metadata MAY be denoted by 
appending a plus sign and a series of dot 
separated identifiers immediately 
following the patch or pre-release 
version. Identifiers MUST comprise only 
ASCII alphanumerics and hyphens [0-9A-
Za-z-]. Identifiers MUST NOT be empty. 
Build metadata MUST be ignored when 
determining version precedence.

1.5.2-rc1+amd
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At least

it's well


defined
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^(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|
[1-9]\d*)(?:-((?:0|[1-9]\d*|
\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\.
(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-
zA-Z-]*))*))?(?:\+([0-9a-zA-Z-]+
(?:\.[0-9a-zA-Z-]+)*))?$
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Not everyone

uses SemVer
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and not everything that looks 
like SemVer adheres to rules



[N!]N(.N)*[{a|b|rc}N][.postN][.devN]
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Python



CalVer
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2023.04

for example
Ubuntu
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Idiosyncratic

Version

Number
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3.141592653

LaTeX
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1.20 (one point two)
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v1.20 (one, twenty)

1.2 == 1.20

v1.2 < v1.20

Perl has

two!
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3.0
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95

Vista

XP11
Xbox Xbox 360

Xbox One

Xbox Series X

Whatever

this is with

Microsoft



It's complicated
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What I'm trying to say is



Ask for a version definition
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If you're asked this in an interview

Don't try to come up with regex

Unit tests are lovely



Document it well

Good luck!

Hope the versions follow a standard
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If you need to do this in real life



Thanks!

PyCon CZ 2023

I'm Juhis

hamatti.org

@hamatti@hamatti.org
Mastodon:

http://hamatti.org

