
Comparing

Version

Numbers

PyCon CZ 2023

PyCon CZ 2023

PyCon CZ 2023

How would
you compare
them then?

PyCon CZ 2023

Semantic

Versioning

PyCon CZ 2023PyCon CZ 2023

1.5.2
MAJOR

MINOR

PATCH

PyCon CZ 2023

def compare_versions(v1, v2):

 """Compare two version strings (in format x.y.z)."""

 if v1 == v2:

 return RESULT.EQUAL

 v1t = [int(num) for num in v1.split('.')]

 v2t = [int(num) for num in v2.split('.')]

 for v1v, v2v in zip(v1t, v2t):

 if v1v > v2v:

 return v1

 elif v2v > v1v:

 return v2

PyCon CZ 2023

Well...

PyCon CZ 2023PyCon CZ 2023

1.5.2-rc.1

A pre-release version MAY be
denoted by appending a
hyphen and a series of dot
separated identifiers
immediately following the patch
version.

When major, minor, and patch
are equal, a pre-release version
has lower precedence than a
normal version:

Example: 1.0.0-alpha < 1.0.0.
PyCon CZ 2023

...and

PyCon CZ 2023PyCon CZ 2023

Precedence for two pre-release versions
with the same major, minor, and patch
version MUST be determined by comparing
each dot separated identifier from left to
right until a difference is found as follows:

1. Identifiers consisting of only digits are
compared numerically.

2. Identifiers with letters or hyphens are
compared lexically in ASCII sort order.

3. Numeric identifiers always have lower
precedence than non-numeric identifiers.

4. A larger set of pre-release fields has a
higher precedence than a smaller set, if all
of the preceding identifiers are equal.

Example: 1.0.0-alpha < 1.0.0-alpha.1 < 1.0.0-
alpha.beta < 1.0.0-beta < 1.0.0-beta.2 < 1.0.0-
beta.11 < 1.0.0-rc.1 < 1.0.0.

PyCon CZ 2023

there

could

be

build

metadata
PyCon CZ 2023PyCon CZ 2023

Build metadata MAY be denoted by
appending a plus sign and a series of dot
separated identifiers immediately
following the patch or pre-release
version. Identifiers MUST comprise only
ASCII alphanumerics and hyphens [0-9A-
Za-z-]. Identifiers MUST NOT be empty.
Build metadata MUST be ignored when
determining version precedence.

1.5.2-rc1+amd

PyCon CZ 2023

At least

it's well

defined

PyCon CZ 2023PyCon CZ 2023

^(0|[1-9]\d*)\.(0|[1-9]\d*)\.(0|
[1-9]\d*)(?:-((?:0|[1-9]\d*|
\d*[a-zA-Z-][0-9a-zA-Z-]*)(?:\.
(?:0|[1-9]\d*|\d*[a-zA-Z-][0-9a-
zA-Z-]*))*))?(?:\+([0-9a-zA-Z-]+
(?:\.[0-9a-zA-Z-]+)*))?$

PyCon CZ 2023

PyCon CZ 2023

Not everyone

uses SemVer

PyCon CZ 2023

and not everything that looks
like SemVer adheres to rules

[N!]N(.N)*[{a|b|rc}N][.postN][.devN]

PyCon CZ 2023

Python

CalVer

PyCon CZ 2023PyCon CZ 2023

2023.04

for example
Ubuntu

PyCon CZ 2023

Idiosyncratic

Version

Number

PyCon CZ 2023PyCon CZ 2023

3.141592653

LaTeX

PyCon CZ 2023

PyCon CZ 2023PyCon CZ 2023

1.20 (one point two)

PyCon CZ 2023

v1.20 (one, twenty)

1.2 == 1.20

v1.2 < v1.20

Perl has

two!

PyCon CZ 2023PyCon CZ 2023

3.0

PyCon CZ 2023

95

Vista

XP11
Xbox Xbox 360

Xbox One

Xbox Series X

Whatever

this is with

Microsoft

It's complicated

PyCon CZ 2023

What I'm trying to say is

Ask for a version definition

PyCon CZ 2023

If you're asked this in an interview

Don't try to come up with regex

Unit tests are lovely

Document it well

Good luck!

Hope the versions follow a standard

PyCon CZ 2023

If you need to do this in real life

Thanks!

PyCon CZ 2023

I'm Juhis

hamatti.org

@hamatti@hamatti.org
Mastodon:

http://hamatti.org

